Publication
Computing Wasserstein Distance for Persistence Diagrams on a Quantum Computer

Jesse J. Berwald, et al.

Persistence diagrams are a useful tool from topological data analysis which can be used to provide a concise description of a filtered topological space. What makes them even more useful in practice is that they come with a notion of a metric, the Wasserstein distance (closely related to but not the same as the homonymous metric from probability theory). Further, this metric provides a notion of stability; that is, small noise in the input causes at worst small differences in the output. In this paper, we show that the Wasserstein distance for persistence diagrams can be computed through quantum annealing. We provide a formulation of the problem as a Quadratic Unconstrained Binary Optimization problem, or QUBO, and prove correctness. Finally, we test our algorithm, exploring parameter choices and problem size capabilities, using a D-Wave 2000Q quantum annealing computer.