Adam Douglass, et al.
SAT filters are a novel and compact data structure that can be used to quickly query a word for membership in a fixed set. They have the potential to store more information in a fixed storage limit than a Bloom filter. Constructing a SAT filter requires sampling diverse solutions to randomly constructed constraint satisfaction instances, but there is flexibility in the choice of constraint satisfaction problem. Presented here is a case study of SAT filter construction with a focus on constraint satisfaction problems based on MAX-CUT clauses (Not-all-equal 3-SAT, 2-in-4-SAT, etc.) and frustrated cycles in the Ising model. Solutions are sampled using a D-Wave quantum annealer, and results are measured against classical approaches. The SAT variants studied are of interest in the context of SAT filters, independent of the solvers used.