Publication
Robust Classification with Adiabatic Quantum Optimization

Vasil S. Denchev, et al. 

We propose a non-convex training objective for robust binary classification of data sets in which label noise is present. The design is guided by the intention of solving the resulting problem by adiabatic quantum optimization. Two requirements are imposed by the engineering constraints of existing quantum hardware: training problems are formulated as quadratic unconstrained binary optimization, and model parameters are represented as binary expansions of low bit-depth. In the present work, we validate this approach by using a heuristic classical solver as a stand-in for quantum hardware. Testing on several popular data sets and comparing with a number of existing losses we find substantial advantages in robustness as measured by test error under increasing label noise. Robustness is enabled by the non-convexity of our hardware-compatible loss function, which we name q-loss.